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ABSTRACT 

 
The Coronal Heating Problem is one of the longest standing unsolved mysteries in astrophysics. 
Measurements of the temperature distribution along the loop length can be used to support or eliminate 
various classes of coronal temperature models. The temperature analysis of coronal loops is a state-of-the-
art astronomy. In order to make progress, scientific analysis requires data observed by instruments such as 
EIT, TRACE, and SXT. The combination of EIT, TRACE, and SXT information provides a powerful data set 
that will yield unprecedented detail on the plasma parameters of a variety of coronal loop structures. The 
biggest obstacle to completing this project is putting the data set together. The search for interesting 
images (with coronal loops) is by far the most time consuming aspect of this project. Currently, this process 
is performed manually, and is therefore extremely tedious, and hinders the progress of science in this field. 
We propose an approach based on data mining to quickly sift through massive data sets downloaded from 
the online NASA solar image databases and automatically discover the rare but interesting images with 
solar loops, which are essential in studies of the Coronal Heating Problem. The proposed solar loop 
mining scheme will rely on the following components: (i) Collection and labeling of a sample data set of 
images coming from both categories (with and without solar loops), (ii) An optimal feature selection 
strategy that will facilitate the retrieval task, (iii) A classification strategy to classify the transformed image 
into the correct class, and (iv) Appropriate measures to validate the effectiveness of the loop mining 
process. This project will be implemented in three main phases that target the image databases collected by 
two different instruments, EIT aboard the NASA/European Space Agency spacecraft SOHO and NASAs 
TRACE. We will leave open the possibility of targeting the SXT database on the Japanese Yohkoh 
spacecraft if time permits. All the results of this project: literature, software, and mined Semantic loop 
features and class labels (in ASCII and XML formats) on tested portions of the different instrument 
databases will be made available to the public and other interested researchers via the World Wide Web. 

 
1. Highlights 

 
• In Year 1, we have started with generic loops that are easily detected by non-experts, 

while waiting for the expert labels to be provided.  
• In Year 2, we have re-coded all the Matlab code in Java, so that the entire code can be 

integrated, installed and ported easily on any platform, and can be used as freeware. 
• In Year 2, our focus moved to the much harder, rarer, and special category of solar loops 

in EIT images as determined by the labeled training data that has finally been provided 
by our collaborators from the University of Memphis.  

• We have investigated different pre-processing and data mining options, and tested 
different combinations of feature sets.  

• We constructed additional features, and in addition performed an extensive number of 
experiments with different classifiers, as well as different cost matrices, and different 
training sample selection strategies and learning approaches, such as boosting.  



• We have isolated data according to its solar cycle, and performed experiments that 
compare results of different solar cycles versus combined cycles.  

• It was discovered that some of the labeling was inconsistent because of subjectivity of 
different subjects. For example, some loops were labeled as no-loops.  

• These labeling problems made it very difficult to design good classifiers no matter which 
pre-processing, features, or classification method was used.  

• Several classification algorithms were compared, including Ripper (a propositional rule 
learner that learns very concise rules, using Repeated Incremental Pruning to Produce 
Error Reduction) [16], C4.5 decision trees [20], Multi Layer Perceptron Neural networks 
(MLP), Support Vector Machines (SVM) [21], Naive Bayes classifiers, and Adaboost 
[22]. Some of the classifiers are listed in Table 1 

Table 1: Some of the investigated classifiers 

Classifier Abbreviation Brief description 

Adaptive 
Boosting 

AdaBoost Boosting algorithm that learns an ensemble of C4.5 base learners 
that gradually focus on examples  that are hard to classify  

Support 
Vector 

SVM AKernel based method that learns an optimal decision boundary in 
a higher dimensional projected space. 

Naïve Bayes NB Probabilistic (Bayesian) classifier 
Multilayer 
Perceptron 

MLP Neural Network Classifier trained using backpropagation 

C4.5 Decision 
trees 

C4.5 Decision tree method that learns a tree based classifier built with 
the most predictive attributes 

RIPPER RIPPER Learns an optimal set of rules that cover the training samples  

K-nearest 
neighbor 

K-NN Lazy Instance Based  classifier  

 
Table 2: Block-based 10-fold cross-validation using low level features 

Classifier Precision Recall 
AdaBoost_C4.5 0.482 0.282 

SVM 0.476 0.115 

C4.5 0.523 0.468 

RIPPER 0.557 0.518 

Naive Bayes 0.453 0.725 
K-NN 0.366 0.349 

Multilayer perceptron 0.598 0.482 

Table 3: Block-based 10-fold cross-validation using edge based features 
Classifier Precision Recall 
AdaBoost_C4.5 0.427      0.376      

SVM 0.547      0.216      

C4.5 0.519      0.44       

RIPPER 0.5        0.557      

Naive Bayes 0.522      0.677      
K-NN 0.382      0.372      

Multilayer perceptron 0.537      0.415      

 



Table 4: Block-based 10-fold cross-validation using combined features 

Classifier Precision Recall 
AdaBoost_C4.5 0.397      0.328      

SVM 0.538      0.209      

C4.5 0.523      0.44       

RIPPER 0.519      0.511      

Naive Bayes 0.498      0.706      
K-NN 0.382      0.378      

Multilayer perceptron 0.475      0.342      

 
• Hence, we have re-examined the labels for each training instance, and made the 

necessary corrections. This was done by involving both the Memphis as well as the 
Louisville team.  

• To accelerate the label verification and correction, we have designed an interactive user-
friendly interface that can quickly toggle between block and full image views to view the 
blocks in context. 

• Furthermore, because a given solar image can contain different regions with different 
solar phenomena (loops, eruptions, flares, or no activity, etc), it was necessary to generate 
the training data by using each image to generate several training blocks. Because of the 
high number of blocks (each image can generate on the order of 20 to 30 blocks), it was 
out of question to label each block manually; rather an automatic (though less perfect 
option) was necessary.  
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Figure 1: Example showing blocks outside the Solar disk 



• These blocks are therefore labeled automatically based on their degree of intersection 
with an area of interest (that contains a loop) and that has been marked by the labeling 
subject. 

• We have found that different subjects occasionally outlined a loop into regions of varying 
sizes. It was essential that a region enclosed only the loop and not much other space. 
Otherwise our automated block extraction and labeling process would result in miss-
labeled blocks. This required re-marking several regions of interest so that they satisfy 
the above requirement. 

• After re-labeling and re-marking the training data, we have repeated all the pre-
processing and classification experiments.  

• We have also constructed and experimented with different features that can capture the 
loops, and have divided the features into two sets: low level and high level features. The 
former captures general intensity properties, while the second set captures edge properties 
and are extracted based on the Hough transform of the edge image as well as EHD (Edge 
Histogram Descriptors), and Gabor texture features. We have found that the Hough based 
features that are extracted from the edges gave the best results, and that the other features 
added little improvement. 

• We noticed the presence of not only one kind of loop but several kinds, in particular, 
some very weak or faint loops were not distinguishable from the background (even after 
pre-processing the images). These weak loops caused a confusion between the 2 classes 
while training classifiers. As a result, we divided the loops into 2 classes: loops and weak 
loops. This resulted in a 3 class problem: loop, weak loop, and no loop, that we felt 
would make it easier to focus on the subtle differences between loops and non loops. 

 

 
Loop Sample 

 
Faint-Loop Sample 

 
Non-Loop Sample 

Figure 2: Block samples from different classes 

 
• Results without distinguishing between stronger loops and faint loops are shown in Table 

5 
 

Table 5: Block-based 10-fold cross-validation Precision/Recall Results in Loop Class using High 
Level Features + Hough Line (Hough Line was applied on binary blocks) when training with 2 

classes 
Precision Recall Classifier 
0.571      0.59 AdaBoost_C4.5 
0.607      0.481 SVM 
0.621      0.67 C4.5 
0.599      0.691 RIPPER 
0.562      0.63 Naive Bayes 

 
• Faint loop blocks can be more quickly identified by scrutinizing the missed loops from a 

first stage of classification using the original 2 class labels (loop and no-loop) 
• Results after taking into account faint loops: 
 



Table 6: Block-based 10-fold cross-validation Precision/Recall Results in Loop Class using High 
Level Features + Hough Line (when faint loops are isolated in a 3rd class) 

Precision Recall Classifier 
0.638      0.62 AdaBoost_C4.5 
0.669      0.533 SVM 
0.659      0.666 C4.5 
0.635      0.738 RIPPER 
0.6        0.668 Naive Bayes 

 
 

• Adding another class can make it easier for the classifiers to “learn” what truly 
distinguishes one class from another 

• In addition to exploring different “kinds” of features, we have investigated ways to attach 
location information to the features, for instance by calculating the features separately in 
several different bands that differ by their altitude above the Solar photosphere. Our best 
result was for splitting each block into 4 bands, and the best results were obtained when 
edge-based features were extracted from the top band (the furthest from the photosphere). 
This is likely due to the noise the abundance of false (i.e. not coronal loops) phenomena 
located near the photosphere. Intensity-based features did not seem to be location 
sensitive. 

• To summarize our best performing features so far include (1) the following low level 
features that were extracted from the intensity levels of the pixels in each block: Mean, 
Standard Deviation, Smoothness, Third Moment, Uniformity, and Entropy; (2) high level 
features that were extracted from the binary edges of the image: Line Direction features 
(based on angles, as explained below), number of edge pixels, number of line segments, 
length of the longest line segment (crude estimate of number of edge pixels on estimated 
lines), and number of edge pixels in each of 4 horizontal bands that make up each block. 
The latter takes into account location information. Lines were estimated using a crude 
Hough transform. From our preliminary experiments, the well known Edge Histogram 
Descriptor features or EHD have resulted in worse results than our Line Direction 
features (based on slope angles of the crudely estimated lines). For Line Direction 
features, we have distinguished between different directions of linear segments based on 
their estimated slopes (from the Hough space), by mapping the ranges of slopes in 
degrees, as shown below, with angles located outside these intervals considered as non-
directional. 

* Horizontal: [0,20] and [160,180]. 
* Vertical: [70,110]. 
* Diagonal: [35,55] and [125,145]. 

 
Table 7: 2-class Block-based 10-fold cross-validation Precision/Recall Results in Loop Class using 
High Level Features + Hough Line with location sensitive features computed on 4 bands (Band 1 = 

furthest from photosphere, …, Band 4 = adjacent to photoshere): All of the High Level Features 
except Third and Fourth Band: HorizontalEdges, VerticalEdges, DiagonalEdges, Non-Directional Edge 
Histogram, Number of Edge Pixels, Number of points on longest straight line (maximum HT accumulator value), 

Number of Edge Pixels in Band 1, Number of Edge Pixels in Band 2. Underlined features are location-
dependent.

Precision Recall Classifier 
0.649      0.623 AdaBoost_C4.5 
0.714      0.36 SVM 
0.662      0.712 C4.5 
0.631      0.784 RIPPER 
0.628      0.698 Naive Bayes 



 
• In general, loop blocks can be very diverse in their shape, size, and direction, and in some 

cases, are very hard to distinguish (even to the untrained Human eye) from other solar 
phenomena that occur in the corona, such a coronal mass ejections and solar flares. Some 
difficult blocks are classified as no-loop by most classifiers because they share a lot of 
similarity with no-loop blocks. Fuzzy sets can help model these loop blocks better. Figure 
4 shows a few examples of loop blocks that are hard to classify. 
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Faint-Loop Sample 

 
Non- Loop Sample 

Figure 3: Sample blocks which are hard to classify, showing an example of a block with a faint loop 
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Non- Loop Samples 

Figure 4: Sample blocks which are hard to classify correctly 

 
    

• Modeling both input features and output labels using fuzzy set membership values can 
help provide a more accurate representation of the ground truth and may help in 
classification of borderline blocks. In order to construct the fuzzy rules, we have first 
selected the optimal feature subset from RIPPER's rules and the nodes in the C4.5 
decision tree. These features were: the number of edge pixels, the number of lines 
segments, the number of edge pixels in the top band, and the length of the longest line. 
The output of the fuzzy inference system is the block label which can be loop or no-loop. 
We determined the value ranges of the input parameters from the ranges in RIPPER's 
rules and the rules derived from the branches of the C4.5 decision tree. Thus, for each 



input parameter, we have defined three intervals: low, medium, and high. Some features 
had an additional value (TooHigh). 

• Mamdani's fuzzy inference systems consist of if-then rules in the form "If x is A then y is 
B", where x and y are fuzzy variables, and A and B are fuzzy values. We selected the 
fuzzy rules from the rules that were generated by RIPPER and from short and pure 
branches in the tree generated by C4.5 decision tree learning. The resulting fuzzy rules 
are assigned weights that are used to combine all the outputs into the final decision. The 
weights were defined based on the number of data correctly classified in the 
corresponding RIPPER and C4.5 rules. 

 
Features used Low Level Features High Level Features 
Classifier Precision Recall Precision Recall 
AdaBoost_C4.5 0.537      0.393 0.638      0.628 
SVM 1          0.002 0.719      0.37 
C4.5 0.538      0.416 0.653      0.695 
RIPPER 0.54       0.36 0.641      0.763 
Naive Bayes 0.305      0.158 0.641      0.709 
MultiLayerPerception 0.57       0.37 0.644      0.693 
Mamdani Fuzzy Rules 
constructed with RIPPER and 
C4.5 

-       - 0.659 0.781 

 

 

×  Naïve Bayes 
+  AdaBoost 
◊  C4.5 
Δ  RIPPER 
∇  SVM 

Figure 5: ROC curve for best classifiers for best performing features for out-of-disk loop detection 

 
• After tuning our results as explained above, we have once again turned to investigate 

more features that can capture the concept of a loop. This has led us to the following new 
features which are based on “curvature” of the edges: 

 
1. Average tangent difference: After tracing edges in a block, the curvature of the 

longest edge was calculated by sliding a window along the edge, and computing the 
average on all windows (i) of the differences between consecutive window edge 
tangent angles ( Өi+1 - Өi) or slopes (Өi=(y2-y1)/(x2-x1)) at the extreme points (x1,y1) 
and (x2,y2) in each window. 

 



 
2. Length of Curvature Edge: This is the length of the longest edge in a block which is 

calculated after edge tracing.  
3. Sign Change distribution: based on the number of window angles that are below 0o, 

N-, and Number of window angles that are above 0o, N+, as follows: 
Sign-change = min (N+, N-) / max (N+, N-)  

4. Euclidean Distance between two endpoints of the longest edge: 

Euclidean-distance 

 
5. Alternative_Curvature = (Distance between two endpoints) / (Curvature length) 
 

 
Several experiments were performed with different attribute combinations. The best results 
are shown below. In these results, RIPPER gave slightly better result in recall than the best 
results so far, while maintaining a similar precision level. Figure 5 and 6 show the ROC curve 
and the Precision versus Recall curve, respectively for the best performing features and 
algorithms so far. 

 
Table 8: 2-class Block-based 10-fold cross-validation Precision/Recall Results in Loop Class using the 

best subset of high level features which contains the following attributes: L1=Length of  Longest 
Curved Line,  L2= Euclidean Distance Between End Points of Longest Curved Line, L3= L1 / L2,  

Non-Directional Edge Histogram, Number of Edge Pixels, Number of points on longest straight line (maximum 
HT accumulator value), Number of Edge Pixels in Band 1, Number of Edge Pixels in Band 2. Underlined 

features are curvature-related. 
Precision Recall Classifier 
0.637      0.616 AdaBoost_C4.5 
0.708      0.36 SVM 
0.647      0.751 C4.5 
0.631      0.804 RIPPER 
0.593      0.721 Naive Bayes 

 



 

×  Naïve Bayes 
+  AdaBoost 
◊  C4.5 
Δ  RIPPER 
∇  SVM 

Figure 6: Precision versus Recall curve for best classifiers for best performing features for out-of-
disk loop detection 

• We have also started classification of loops located within the Solar disk, and will report 
our results in the near future. 

 
 

 
2. Relevance to NASA 
 
The search for interesting images for coronal temperature analysis (with coronal loops) amounts 
to searching for a needle in a haystack, and therefore hinders the fast progress of science in this 
field. The next generation EIT called MAGRITE, scheduled for launch in a few years on NASA's 
Solar Dynamics Observatory, will require state of the art techniques to sift through the massive 
wealth of data to support scientific discoveries. The proposed work addresses goals 1 and 2 of the 
Applied Information Systems Research (AISR) program, since it includes novel information 
technology and computational methods that promise to increase productivity of the OSS research 
and public outreach endeavors, and would benefit the state-of-practice in space science. It also 
fosters interdisciplinary collaboration spanning the space science (Co-I) and computer science 
(PI) disciplines. Our project addresses objective 4 of the AISR Program, namely increasing 
science and educational return from the data through advanced knowledge discovery 
methodologies. 
 
3. Application to NASA Missions and Programs 
 
The Coronal Heating Problem is one of the longest standing unsolved mysteries in astrophysics. 
Measurements of the temperature distribution along the loop length can be used to support or 
eliminate various classes of coronal temperature models. The temperature analysis of coronal 
loops is a state-of-the-art astronomy. In order to make progress, scientific analysis requires data 
observed by instruments such as EIT, TRACE, and SXT. The combination of EIT, TRACE, and 
SXT information provides a powerful data set that will yield unprecedented detail on the plasma 
parameters of a variety of coronal loop structures. The biggest obstacle to completing this project 



is putting the data set together. The search for interesting images (with coronal loops) is by far the 
most time consuming aspect of this project. Currently, this process is performed manually, and is 
therefore extremely tedious, and hinders the progress of science in this field. Our project aims to 
accelerate and automate the discovery of the rare but interesting images with solar loops. 
 
In addition to the specific problem from Astrophysics, above, research that advances state of the 
art in solar physics will have a significant impact on society and other scientific fields because of 
the following reasons: (i) The climate connection: the sun is a source of light and heat for life on 
Earth. Scientists strive to understand how it works, why it changes, and how these changes 
influence the Earth, (ii) Space weather: The sun is the source of the solar wind: flow of gases 
from the sun that streams past the Earth at speeds exceeding a million miles per hour. 
Disturbances in the solar wind shake the Earth's magnetic field. Space weather can change the 
orbits of satellites and shorten mission lifetimes. Excess radiation can physically damage 
satellites and poses a threat to astronauts, in addition to power surges and outages on Earth, and 
hence needs to be predicted. (iii) The sun as a physical laboratory: the sun produces its energy by 
nuclear fusion, a process that scientists have strived for decades to reproduce by involving hot 
plasmas in strong magnetic fields. Much of solar astronomy involves observing and 
understanding plasmas under similar conditions. 
 
4. Tracking 
 
All the results of this project: literature, software, and outputs (labels) of the developed 
classification methods on tested portions of the different instrument databases will be made 
available to the public and other interested researchers via the World Wide Web. Outputs of our 
automated retrieval process (on new test data) will be saved in both ASCII column format and 
XML format to facilitate data interchange with and between different research groups. The XML 
schema will include derived Semantic features (Estimated number of loops and their confidence) 
and the assigned class labels. 
 
Tracking the usage of our products is easily accomplished by monitoring the access statistics on 
the projects website, a feature that is already in use, as well as searching for citations on the Web. 
 
 
 
5. Software and Publications 
 
Software on the project collaboration platform website: 
"http://webmining.spd.louisville.edu/twiki/bin/view/SOLARLoops/".  
 
Publications & Presentations: 
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J. Roames, K. Nasraoui., “Mining Coronal Loops in Solar Images from the SOHO 
collection”, In Proceedings of NAFIPS 2007, San Diego, CA, 2007. 

• O. Nasraoui and C. Rojas, “Robust Clustering for Tracking Noisy Evolving Data Streams,” in 
Proc. SIAM conference on Data Mining, Bethesda, MD, Apr. 2006, 618-622. 

• O. Nasraoui, H. Elgazzar, C. Rojas, Fabio Gonzalez, Jonatan Gomez , J. Schmelz, and J. 
Roames, Kaouther Nasraoui, Lindsey Lippner, Jennifer Garst, Andrew Gibson, “Using Data 
Mining for Automatic Retrieval of Solar Loop Images”. Conf. on Statistical Challenges in 
Modern Astronomy, Pennsylvania State University, June. 2006. 

 



 
6. Upcoming Plans 
 

• Publishing the software and mining results of Phase 1: Mining loops located outside the 
Solar disk in EIT data 

• Completing Phase 2: Mining loops inside the Solar disk in EIT data 
• Starting Phase 3: Mining loops in TRACE data. 
• Collection and labeling of relevant TRACE images for Phase 3 (our collaborators in the 

Solar Physics lab at the University of Memphis), notably in several categories (low, 
medium, high level of solar activity) depending on the solar cycle (minimum to 
maximum) 

• EIT data’s edge quality is too poor for reliable higher order (e.g. elliptical) fitting with 
the Hough Transform (HT). However, TRACE data has higher quality edges because it 
contains close-up high-resolution shots of Solar corona, and should therefore be able to 
benefit from HT and from direct ellipse detection. Thus, several directions are in order 
for TRACE: 

o Scaling the Hough transformation procedure by incorporating constraints to 
prune the space of possible parameters in the early stages of computation 

o Integration of the Hough space analysis with single-pass robust clustering 
(ACRES-Streams) to automate the semantic loop feature extraction  

o Investigating alternative loop detection methods, such as by seeking clusters of 
elliptically shaped arcs. 

• Improving results for Phase 1 and Phase 2 in 2 ways:  
o Building an aggregation decision making system to combine the class outputs of 

neighboring blocks into a final “image-based” outcome 
o Using a preliminary clustering stage (for all data): Applying clustering 

(unsupervised categorization) on the varying cycle data (different levels of solar 
activity) to create homogenous groups of images 

o Developing context-sensitive loop retrieval mechanisms that automatically adapt 
to the category of each input image 


